

ISSN: 2322-3537

 Vol-11 Issue-02 Dec 2022

145

Optimizing Requirements Management: A

Design-Driven Implementation Framework

Mr.Mohammad Sabeer1., Shivani Reddy2

 1 Assistant Professor, Department of H&S, Malla Reddy College of Engineering for Women.,

Maisammaguda., Medchal., TS, India

2, B.Tech CSE (19RG1A05C5),
Malla Reddy College of Engineering for Women., Maisammaguda., Medchal., TS, India

Abstract

A customer's goals, ideal results, and trade-off

preferences determine the objective functions in

this paper, which explains the engineering design

process as an optimization problem in the system

design space. In this case, the consumer's demands

are defined as constraints that determine the

feasible range of system designs. In view of the

aforementioned overhaul, this piece proposes

carrying out a process for handling needs. With this

reformulation, we hope to achieve the following:

better communication between the design team and

the customers; more customer involvement in the

system definition process; better adherence to

customer wishes when trade-offs and conflicts

emerge; and integration of decision-making

techniques and rationales with requirements

discovery and management processes. Having laid

out the proposed requirements management model

in full, the paper moves on to examine the

conditions under which this design process

formulation is amenable to different methods of

solving non-linear optimization issues. We suggest

further case studies that use the aforementioned

metrics to evaluate this method's effectiveness to

more traditional requirements management

solutions.

1. Introduction

Customers provide requirements to systems

architects that specify complex systems. In a

contract between a consumer and a service

provider, the requirements spell out exactly what

the system must be able to perform. When

designing a system, it's important to take the

client's preferences into account. designer's

capacity to respond to changes in client priorities

and explain design decisions is enhanced by direct

feedback from end users.1 Models that faithfully

describe the system while also being simpler to

understand than the system as a whole greatly

facilitate communication. Numerous models have

been developed to explain the design process.2 the

design organizations and the client's preferences, as

well as the designer's own process model (if any);

will determine which model is chosen for a given

project. From very linear to cyclical, the models

cover it all. Some models provide distinct phases of

development, or stages through which a design

passes, or processes that may run in parallel.

Two prevalent types are the "Vee Model" and the

"Waterfall Model." This paper suggests recasting

the design process as an optimization problem, with

the goal being to identify the optimal combination

of parameters that will result in a system that

satisfies the needs of the client. The "best" in this

context is an objective chosen by the client, and the

"criteria" are the standards by which the system

must comply.3 since the scope of this model is

limited to requirements creation and design,

additional process models may still be used to

address topics like implementation and verification.

There are a number of ways in which

communication is enhanced by the optimization

model of the design process. Requirements to goals

hierarchies are typical decision making tools, and

this model isolates the requirements elicitation

process so that it may be communicated to

consumers.7 The reference implementation

illustrates this connection. This paradigm has the

ISSN: 2322-3537

 Vol-11 Issue-02 Dec 2022

146

potential to enhance needs analysis by making use

of other decision making tools, such as the decision

tree, with which objective hierarchies are

interconnected. These avenues of inquiry are

ignored in the present work. By resolving conflicts

and tying in the needs of the customer, this model

of the design process also improves communication

by including the reasoning behind decisions

directly into those criteria.

2. Reference implementation

To frame the requirements management process as

an optimization issue, the authors advise using this

reference implementation as a background and

providing terminology consistent with the

optimization model. The components of this

approach are not novel and may be found in a more

familiar management plan for meeting needs. This

implementation was created to convey the

underlying paradigm as clearly as possible.4 for the

most efficient execution of this strategy, it is

recommended to use a model-based systems

engineering tool that is database-oriented, can

automatically monitor the attributes of

requirements, and can automatically maintain

relationships with a revision history.10

Specification classes, relationship rules, and

conflict resolution, elicitation, and management of

requirements are the three main pillars of this

methodology. Specification in this context means

an ordered description of the system. While all

specifications may be thought of as requirements,

not all requirements are necessarily written in the

same formal style. Model-based systems

engineering tools that facilitate the definition of

new classes and relationships between them are

ideal for employing this technique; these tools

make it possible to easily traverse the relationships

between constraints and attach validation and

verification data to them. The term "BONC" may

be used to describe this strategy, which is derived

from the four types of specifications (Binding,

Objective, Non-binding, and Conflict).

2.1. Specification classes

Identifying and conveying consumer desires, as

well as deriving a system solution, are all

facilitated by this approach's four specification

classes. Here we distinguish between "binding

constraints," "non-binding constraints," "conflicts,"

and "objectives." When combined, binding and

non-binding constraints represent the same concept

as conventional requirements management's

requirements. The difference between the two

types, which is not usually highlighted, is that

binding constraints originate from the customer and

stakeholders and should be enough to define the

whole set of workable system solutions. The

developer may face binding limitations from a

variety of sources, such as legal or physical

requirements that cannot be negotiated.

If constraints are to be nested hierarchically, non-

binding constraints must be derived from either

binding constraints or a higher-level non-binding

constraint. The systems architect will need to do

some design work if the limitations are not

mandatory. When added to the customer-generated

limitations, these additional constraints

progressively narrow the solution space until only

one viable option remains. However, non-binding

constraints are handled differently from binding

constraints, and the customer's agreement of them

is not always required. This approach is

distinguished by its non-binding limitations. The

systems design group may decide how they should

be handled. The specification model may also

include documentation of the design process by

making use of the non-binding restrictions. Using

binding requirements to symbolize all of the

conventional criteria at each level helps establish a

clear line between design effort and what is

typically viewed as requirements. Keep in mind

that this definition of "binding" and "nonbinding"

constraints is distinct from how other optimization

textbooks define these words. Here, the solution is

said to be "binding" if it perfectly satisfies the

constraint and “nonbinding if it goes beyond the

constraint's requirements.11

Whenever a validation check identifies a

discrepancy between two requirements, a conflict is

generated to detail the discrepancy and indicate the

resolved constraint. The first step in resolving a

dispute is to identify the two constraints at issue,

which may or may not be the identical constraints

that first triggered the disagreement. The resolution

process proceeds in accordance with the established

order of priority, and in the end, feedback from the

affected customers should be included into the

solution. In section 2.3, we go into further depth

about how to handle conflicts between constraints.

.2. Relationships

Each class in the specification may be related to

another. Refines/refined by and justifies/justified

by are the two most common types of class

connections. Figure 1 is a graphic depicting these

important connections. Both binding and non-

binding restrictions may have a "refines"

connection with one another. Pairings of goals, or

between a binding and non-binding restriction

where the latter refines the former. The objects

involved in the relationships are arranged in a

hierarchy, with the item doing the refining being

ISSN: 2322-3537

 Vol-11 Issue-02 Dec 2022

147

lower in the hierarchy than the object being refined.

This is consistent with the standard practice of

categorizing needs according to their granularity.

When goals are connected in this manner, a

hierarchy of objectives is created, much like the

decision-making hierarchies we're accustomed to

seeing.

Class connections are shown in Figure 1.

Objectives and other classes have a

"justifies/justified by" connection. A

"justifies/justified by" link between an aim and a

constraint implies that the objective has contributed

to the justification for the limitation. Even if there

is no verifiable non-binding constraint relating to

cost, in the case where the objective function is to

minimize cost, the objective function would justify

the addition of a non-binding constraint by the

system architect that would restrict the feasible

design space to certain architectures on the basis

that those architectures are lower cost. A direct line

of sight between the target and the customer's

wants and the system architect's design decisions is

established.

2.3. Conflicts

A conflict between two constraints may be

uncovered during validation.5 when requirements

are at odds with one another; it means that there is

no workable solution inside the design area that has

been defined by the constraints. While a discussion

of tensions is not required for the theoretical

application of the optimization model, it is vital

when real-world circumstances that may develop.

Although conflicts are unusual, they should be

resolved since they indicate gaps in our knowledge

of the system. The client should direct the

resolution of any disputes between two binding

restrictions. The following principles are provided

as guides, and a conflict may be handled by the

client or by modifying non-binding restrictions as

the system architect sees appropriate. When a

binding requirement conflicts with a non-binding

constraint, the latter should take precedence since it

was mandated by the customer. Constraints at a

higher level should often be given more weight

than those at a lower level. If a binding constraint

at a lower level conflicts with a non-binding

constraint at a higher level, or if two non-binding

constraints at the same level conflict, the conflict

should be traced to the higher level constraints until

one of the other cases is encountered, as the

constraints may be refining higher level constraints

that only slightly conflict. Although unresolved

constraints that were engaged in a dispute should

be retained for traceability, they should not be

published with the body of current constraints.

To resolve the conflict, either the conflicting

constraint must be deleted or another constraint

must be refined. For audit ability purposes,

conflicts should be recorded at the same level as

the conflicting restrictions.

2.4. Elicitation process

To make the most of this approach, it's important to

gather trade off relationships with the customer's

broad objectives and narrow preferences during

requirement elicitation. This technique depends on

this kind of elicitation, which is already a part of

many requirements management procedures, to

generate a suitable objective function for the

parameters. Detailed expressions of aspirations and

motivations that cannot be reduced to a single

constraint statement are also given more weight.

2.5. Management process

The amount of specificity of the restrictions

informs the hierarchical organization of the

components. All projects should be able to compile

with at least level 1 restriction. Most projects just

need a single document at Level 1 that details the

major client goals and restrictions. Formatting

suggestions include: explaining the goal utility

first, then customer priorities and compromises.

The next step is to classify the binding constraints

as either functional or process. Last but not least,

the requirements for client acceptability testing

must be specified. There may be a need for many

papers if there are many different types of

constraints or if there are many different

stakeholders who will submit binding constraints.

If this is the case, then everyone should know

exactly where to find the list of goals.

ISSN: 2322-3537

 Vol-11 Issue-02 Dec 2022

148

3. Implications of the optimization

model of the design process

The optimization model of the design process will

be defined as

The objective function is denoted by f(x), while the

restrictions are denoted by B(x). All possible

choices for a design may be found in the set X.

Many of the qualities that make solving the issues

easier in optimization theory are absent from the

binding constraints, viable designs, and even the

target. In most cases, the functions are not linear,

possible inconsistency; not defined over a convex

set; neither convex nor concave. This often renders

the theorems associated with extended

optimization, such as the Karush-Kuhn-Tucker

(KKT) optimality conditions, inaccessible. Several

approaches exist that attempt to deal with these

concerns while still allowing for inferences to be

made about the system design process.9 I will

elaborate on a select handful of them below.

The first approach is to break the system down into

more manageable pieces that yet satisfy the

requirements. The ideal reduced system would

satisfy the condition for a convex programming

problem, allowing for easier solution with less

work.8 In some cases, this is straightforward to

achieve; for instance, a software system may have a

clear goal and a set of functional requirements that

can be mapped onto convex functions, but also

include requirements specifying documentation or

quality assurance that are not tied to the design

variables specified in the functional requirements.

In reality, this approach may be quite subjective

when deciding which compact systems are most

suited. In addition, only "well behaved" systems

will naturally reduce to a convex programming

problem without further iteration on the constraints.

The process of breaking down a complex issue into

manageable pieces is standard practice in design;

hence it does not advance the state of the art in

system design. Altering requirements elicitation

such that only convex-function-isomorphic

constraints are generated is another option.

Requirements analysis utilizing KKT conditions or

other ways of addressing convex programming

issues might alter the conventional elicitation

procedure and provide a set of system constraints.

If the design process were represented as a convex

programming issue, viable solutions may be arrived

at more quickly since the theorems pertaining to

convex programming give sets of both necessary

and sufficient criteria for discovering optimum

solutions. However, this approach may be quite

challenging, and there is no assurance that the

system the client wishes to develop can be

formulated using this technique. In addition, this

method of obtaining restrictions may seem exotic

to system architects and completely alien to end

users. This undermines the design process

optimization model's communication benefits.

System architects would benefit greatly from the

discovery of a tangible, intelligible approach for

extracting actual system constraints that can be

transferred to convex functions.

3.1. Duality

The capacity to conceive and solve the dual issue is

perhaps the most significant consequence of the

suggested model of the design process. An issue's

dual is a similar problem expressed in a different

set of variables. Even though the original issue

cannot be properly examined, its dual may be due

to the dual's unique qualities. What is meant by the

term "dual function"? 6

Lagrange multipliers u and v and the minimum

function info are defined as follows. Therefore, we

have a two-pronged issue:

The dual function has numerous useful qualities

even if the original issue is not specified over

convex sets or if the constraints are not convex,

including being concave, possessing sub gradients,

and allowing for the determination of directions of

steepest climb. The solution to the dual issue (D) is

simplified as a result of all of the above. An issue

of maximizing. It is also feasible that, even when

using standard design methods, a fresh perspective

gained from the formulation of the dual issue will

allow for a deeper understanding of the system or

the identification of optimal solutions.

ISSN: 2322-3537

 Vol-11 Issue-02 Dec 2022

149

4. Conclusions and further work

In this study, I suggested modeling the design

process as an optimization problem with a

customer-provided goal and design constraints. I

also provided a case study of a requirements

management system installation that shows how

this idea may be used to effectively convey system

needs, or limits, must be met. The illustrative

requirements management system not only enables

the customer-provided information to be defined,

but also the design choices and their justifications.

One might apply the system architect-defined

limitations during system design to reduce the

viable area to a single design. In this publication,

we attempted to provide the groundwork for future

research. From a mathematical perspective, seeing

the design process as an optimization issue is

neither strange nor difficult. It has to be seen,

however, if this reduces the amount of time needed

to find a solution or results in a better outcome. It's

not easy to design a new system, especially because

not all optimization methods are computationally

efficient. To assess this framework's efficacy and

potential applications, a real example of its use

must be constructed and contrasted head-on with a

conventional formulation. In order to meet the

needs of a nanosatellite development project at a

university, a case study of this kind is now in the

planning stages.

References

1. Carlshamre P, Regnell B. Requirements

Lifecycle Management and Release Planning in

Market-Driven Requirements Engineering

Processes. REP2000.

2. CMMI for Development, Version 1.2. Pittsburgh:

Carnegie Mellon Software Engineering Institute,

2006.

3. Mylopoulos J, Chung L, Nixon B. Representing

and Using Nonfunctional Requirements: A

Process-Oreiented Approach. IEEE

Transactionson Software Engineering 1992; 18:6 .

4. Hoffman M, Kühn N, Weber M, Bittner M.

Requirements for Requirements Management

Tools. IEEE International

RequirementsEngineering Conference 2004.

5. Shehata M, Eberlein A, Fapojuwo A. IRIS-TS:

Detecting Interactions Between Requirements in

DOORS.

6. Bazaraa M, Sherali H, Shetty C. Nonlinear

Programming: Theory and Algorithms. 3rd Ed.

New Jersey:John Wiley & Sons; 2006.

7. Clemen R, Reilly T. Making Hard Decisions.

South-Western; 2001.

8. Boyd S, Vandenberghe L. Convex Optimization.

Cambridge, UK:Cambridge University Press;

2004.

9. Le Thi A, Pham T. The DC (Difference of

Convex Functions) Programming and DCA

Revisited with DC Models of Real World

Nonconvex Optimization Problems. Annals of

Operations Research 2005; 133:23-46.

10. Long D, Scott Z. A Primer for Model Based

Systems Engineering. 2nd Ed. Vitech Corp; 2012.

11. Hillier F, Lieberman G. Introduction to

Operations Research. 9th Ed. New York:McGraw-

Hill; 2010.

